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Abstract: Invasive species are a major threat to global biodiversity. Therefore, it is crucial to monitor
their presence and expansion within invaded areas and carry out studies to improve our knowledge
of their biology and ecology. One of the most effective and spectacular invaders among freshwater
snails is the acute bladder snail (Physella acuta) (Draparnaud, 1805). This study aims to update the
available data on P. acuta in Morocco and determine the main environmental factors that favor its
distribution and expansion in this country. Field surveys were conducted in northern Morocco
between 2014 and 2023, with a focus on protected areas such as Ramsar sites, and especially great
geographical barriers such as the Middle Atlas Mountains and the Sebou and Moulouya River basins.
The gastropods were collected using Surber samplers (20 × 25 cm surface area, 400 µm mesh),
together with measurements of the physicochemical parameters of the water and other abiotic factors.
The bladder snail is probably the most widespread freshwater snail in Morocco, where the species
appears to be highly adaptable and can thrive in different habitats, including degraded ones, showing
great plasticity in terms of the physicochemical parameters of the water. The main factor limiting
the geographical distribution and abundance of P. acuta in the study area was water velocity and
conductivity. However, further studies are required to address the future range of expansion of P.
acuta in relation to climate change. Although one of the consequences of climate change is reduced
water flow speed, which may promote its range of expansion in Morocco, salinization of streams may
also reduce its ability to colonize new environments.

Keywords: aquatic invasion; invasive snail; environmental risk; North Africa; salinization; range
expansion; climate change

1. Introduction

The introduction of exotic species is considered one of the main factors endangering the
biodiversity of aquatic ecosystems [1–3]. In recent years, the introduction of exotic species
has also been seen as a new form of global change [4], especially in aquatic ecosystems; the
significant growth of international trade and concurrent increases in transport capacities
have accelerated the rate of introduction of alien species throughout the world [5]. Invasive
species have important worldwide consequences on native biodiversity [6], but also on
public health [7] and local economy [8,9].

Among freshwater invaders, non-native freshwater gastropods can have an important
effect on the biodiversity of colonized areas. Indeed, many snail species have proved to be
very successful invaders in recent decades, even able to cross oceans and continents [10–13].
In addition, freshwater snails can be carriers and transmitters of several parasites and
pathogens [14–17] that spread through being carried by their hosts. A good example of
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a successful biological invasion among the Gastropoda class is the acute bladder snail
(Physella acuta) (Draparnaud, 1805)—an aquatic pulmonate snail with a left-handed light
and glossy yellowish corneous shell and pointed apex, and no operculum. The body is
greyish. The upper mantle under the shell is covered with spots; the animal has digitations
(finger-like processes) along the edge of the mantle against the columella and there is no
pseudobranch (false gill). The shell has six sinistral fast increasing whorls, slightly convex
with a clear suture, which is in many specimens whitish, as the columellar border, and
shell size varies between 8 and 15 mm high and from 5 to 7 mm wide. It may be confused
in North Africa with the species Physa fontinalis (Linnaeus, 1758), which has a generally
smaller shell with an obtuse apex, whereas P. acuta has an acute apex [18].

Although the type locality of Physella acuta is in the Garonne River basin (France) [19] (it
was once thought to be native to the Mediterranean), the origin of the acute bladder snail is
from the Nearctic (native to the northeastern United States and adjacent Canada) [20]. It was
believed that the original description was made when the species was already introduced
to Europe [13], as for another North American invader Gammarus trigrinus described in
England. The invasive species may have spread from North America to France across
Europe and is now considered cosmopolitan, invading all continents except Antarctica
and colonizing different habitats representing a wide range of abiotic factors [21–23]. The
invasive species is often referred to in the literature as Physa acuta (Draparnaud, 1805) or
sometimes Haitia acuta (Draparnaud, 1805). In this study, we used Physella acuta following
Vinarski [13].

The first record of P. acuta in Morocco probably dates back to 1972. This species, like
most of the non-native species known in Morocco, was certainly established either from
aquarium plants or with fish species introduced into Moroccan freshwaters after the Second
World War [24]. Since then, the species has been recorded all over the country and is now
considered common in its continental waters [25–29]. However, its ecological niche and
geographical range of expansion have been little monitored following the first report in
Morocco. In this study, we first aim to update the available data on P. acuta in Morocco
and to determine the main environmental factors that favor its distribution in this country,
while trying to confirm its ecological plasticity. The second goal of our study is to estimate
the potential impact of climate change on its future range of expansion in Morocco and
adjacent countries.

2. Materials and Methods
2.1. Field Surveys

Field surveys were conducted between 2014 and 2023 in 140 sampling sites cover-
ing various environmental conditions and types of water bodies (estuaries and streams,
irrigation canals, lagoons, ponds, and brackish and salty marshes) observed in Morocco,
with a particular focus on protected areas such as Ramsar sites and sites of ecological
and biological interest (known as SEBI or SIBE). Quantitative samples of the different
microhabitats present on the site were taken against the current between 10am and noon.
The choice of microhabitats was based on their biogenic capacity (favorable for aquatic
life), their representativeness within the site and the different classes of current velocity at
the sampled site. We collected relative estimates of macroinvertebrate taxa, focusing pri-
marily on P. acuta in different microhabitats surveyed at each locality. Macroinvertebrates
were collected using sweep nets, dip nets and Surber samplers (surface area 20 × 25 cm;
8 samples equating to 0.40 m2). Abundance data were converted to density per m2 (see the
Suplementary file for the complete list of localities and P. acuta abundance).

2.2. Environmental Data

Water pH, electrical conductivity (µs·cm−1) and dissolved oxygen concentrations were
measured directly on the field with a portable apparatus (WTW, MPP350) and the water
temperature was measured (±0.1 ◦C) using both a digital and mercury thermometer. The
flow velocity (in m.s−1) was measured as the time taken by a floating body (a cork stopper)
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to cover at least one meter. Elevation was measured using a GPS device (Garmin eTrex
10, Schaffhausen, Switzerland). In addition, we analyzed the physicochemical parameters
of the waters harboring P. acuta. For each station, two replicates of each water sample
were collected in 500 mL polyethylene bottles and preserved with 2 mL of concentrated
hydrochloric acid. Samples were carried out in a cooler according to the ISO 5667-6,
ISO 5667-2 and ISO 5667-3 [30–32] standards. Sulfates (SO4

2– in in mg·L−1), the biological
oxygen demand after 5 days (BOD5 in mg·L−1), and orthophosphate (PO4

3− in mg·L−1)
and nitrate (N-NO3

− in mg·L−1) concentrations were measured in the laboratory according
to AFNOR standards [33] and Rodier et al. [34].

2.3. Statistical Analysis

Out of the 140 sampled sites, 74 were chosen to ensure homogeneous data, and 44 of
these 74 sites harbored P. acuta. Other sites harboring P. acuta were not included in the
following analyses because some environmental parameters were missing. To compare
physicochemical parameters between sites, we used ANOVAs followed by Tukey’s test if
conditions of normality and/or homoscedasticity were satisfied; otherwise, we used the
Kruskal–Wallis test followed by Wilcoxon tests. The analyses were carried out using R
software version 4.1.3, and the ggeffects, MASS and ggplot2 packages.

To investigate the relationship between environmental factors and the presence of P.
acuta, we firstly conducted a principal component analysis (PCA) with the ade4.0, factoextra
and ggeffects packages. We applied a logistic regression to determine the environmental
factors explaining the distribution of P. acuta in Morocco using MASS, ggplot2 and agricolae
packages. Logistic regression is a modeling tool that primarily attempts to forecast and
clarify the outcomes of a binary categorical parameter Y using a set of continuous, discrete
or binary variables X. Abundance data were transformed into presence/absence data before
conducting a logistic regression [35]. We implemented a step-by-step top-down selection
approach to enhance the explanatory model. We evaluated the quality of the final model
based on the Akaike information criterion (AIC), whereby lower values indicate better
model performance. We considered the model valid and accepted when it satisfied the
logistic regression assumptions, including sufficient cases and no overdispersion.

2.4. Gathering Distribution Data

To complete and update the distribution map of P. acuta in Morocco, the geographical
coordinates were compiled from the Global Biodiversity Information Facility GBIF [36] and
an extensive literature search of published articles [24–29,37].

3. Results

Physella acuta is widely distributed throughout Morocco, with the southernmost record
from the Laayoune-Sakia El Hamra region (Figure 1).

The species was detected at 96 sites (out of 140 sampled sites) along the northern
part of Morocco, occupying a wide range of habitats: high-altitude lakes (e.g., Sidi Ali,
Zerrouka and Tifounassine), the potamal section of big rivers (e.g., Moulouya and Sebou)
or anthropogenic habitats (e.g., the artificial canal of Saidia). Most of the surveyed inland
Ramsar sites were infested by the invasive gastropod. In the sites surveyed, P. acuta was
often found in association with shallow, stagnant or slowly flowing waters. Future surveys
could reveal other populations of this species and extend its known range in Morocco. The
complete list of records for P. acuta in Morocco is provided in the Supplementary Material.
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Figure 1. Updated map of P. acuta distribution in the continental waters of Morocco. Red triangles:
own records; red squares: bibliographic records from GBIF and published articles [24–29,36,37].

The bladder snail showed great plasticity in terms of the physicochemical parameters
of the water, as illustrated by the abundance of P. acuta according to the physicochemical
parameters of the water and abiotic factors in each new locality (Table S1 in the Supple-
mentary File). Regarding electrical conductivity in particular, P. acuta was recorded in
low mineralized waters with a minimum of 213 µs·cm−1 at Ain Sfa (perennial spring in
the Oriental region of Morocco) and in the brackish waters of the coastal system, with a
maximum of 30,340 µs.cm−1 registered at Sidi Boughaba Lake (a Ramsar site on the Atlantic
coast of Morocco). The species appears to tolerate significant spatiotemporal fluctuations
in dissolved oxygen levels; it has been observed in both highly oxygenated waters, with a
concentration of 9.6 mg.L−1 at Dardoura River, an affluent of the Marchica lagoon (Ramsar
site on the Mediterranean coast of Morocco), and in weakly oxygenated waters, with a
minimum concentration of 1.5 mg·L−1 registered at Ouzej R (upstream of another affluent
of the Marchica lagoon). The species demonstrates great plasticity, as evidenced by its
ability to tolerate a wide range of organic pollution indicators. Specifically, it can tolerate
nitrate concentrations ranging from 0.03 to 53.62 mg·L−1, sulfate concentrations ranging
from 34 to 403 mg·L−1, phosphate concentrations ranging from 0.005 to 4.31 mg·L−1 and
BOD5 concentrations ranging from 0.49 to 32.0 mg·L−1. During the study period, P. acuta
was found in waters with a neutral pH in general, ranging between 6.5 and 8.5, and in
water temperatures ranging from 16.9 to 28 ◦C.
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The mesological parameters of the sites were initially analyzed using standardized
principal components. The first two axes F1 and F2 (Figure 2) accounted for 51.6% of the
total inertia and held the bulk of the information. Axis F1 (38.9% of total inertia) showed
a conductivity gradient that increased from left to right. Axis F2 (12.7% of total inertia)
showed water velocity rising from bottom to top and being negatively correlated with
depth. The species obviously grew absent when conductivity or water velocity increased.
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Figure 2. Biplot of the first plane of the principal component analysis of physicochemical parameters
(T: temperature, Cond: electrical conductivity, FV: flow velocity, O2: dissolved oxygen, NO3: nitrate,
SO4: sulfates, PO4: orthophosphate, BOD5: biological oxygen demand and Dep: depth). Circles
indicate 95% confidence intervals for the sites colonized by P. acuta (blue) and the non-colonized
sites (red).
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The analysis of variance (see Figure 3) showed that of the ten mesological variables
considered in this study, four had a direct influence on the presence or absence of P. acuta
and one had an influence on its abundance.
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Figure 3. Boxplots of environmental variables classified according to P. acuta presence (1)/absence (0)
or abundance. The letters above indicate whether there is a significant difference between sites in
pairwise post hoc comparisons (ns: not significant. p-values: * ≤ 0.05; ** ≤ 0.01).

Based on the results of the variance analysis (Figure 3), we inferred that P. acuta
occurrence was affected by flow velocity, electrical conductivity, depth and BOD5, while
sediment impacted its abundance.

The AIC of the best logistic model was 71.554. Based on this model, we concluded
that there was a significant correlation between P. acuta presence and three environmental
factors (conductivity, flow velocity and substrate type) with 95% confidence (Table 1).

Table 1. Final model fit to the study data, n = 74.

Coeff. Std. Error Z p 95% CI

Conductivity 0.998 0.0007 −3.51 0.0004 [0.996, 0.999]
Flow velocity 0.040 0.877 −3.67 0.0002 [0.005, 0.181]
Sediment/sand 0.357 0.72 −1.43 0.152 [0.079, 1.390]
Sediment/slime 0.031 1.24 −2.80 0.0052 [0.001, 0.273]

The explanatory variables of the ultimate model accounted for 38.39% of the variation
in the response variable, as noted by McFadden’s pseudo-R2. The predictions were flawed
in 13 instances out of a total of 74, equating to a 17.5% misclassification rate.
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The logistic model used in this study was able to forecast the likelihood of P. acuta
presence (Figure 4). It suggested that the species was more likely to be present when
water velocity and electrical conductivity were low. Nevertheless, the chance of the species
being present decreased significantly in the presence of slime substrate (25%), whereas it
significantly increased when the substrate was muddy (76%) or sandy (63%).
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Figure 4. Likelihood of P. acuta presence based on the model used in this study with 95% confi-
dence bands.

Figure 4 shows a significant decrease in the probability of the presence of P. acuta
according to conductivity and flow velocity. P. acuta has a 25% chance of inhabiting an
environment with a conductivity of 2000 µs·cm−1 or a flow velocity above 50 cm·s−1.

However, we found a strong interaction between environmental factors; for instance,
the probability of the species’ presence at a conductivity of 2000 µs·cm−1 exceeds 80% when
the flow velocity is low (Figure 5). The substrate has the same impact on the probability of
P. acuta presence in relation to the flow speed. The probability is close to 99% for a mud
substrate (see Figure 5), compared with 78% (see Figure 4 and Table 2) for a slime substrate,
as long as the flow velocity does not exceed 0.15 m·s−1.
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Table 2. Likelihood of P. acuta presence based on the model used in this study with 95% confidence bands.

Conductivity Predicted 95% CI Flow Velocity Predicted 95% CI Sediment Predicted 95% CI

0 0.96 [0.82, 0.99] 0 0.97 [0.85, 0.99] mud 0.78 [0.57, 0.91]

400 0.90 [0.74, 0.97] 10 0.92 [0.77, 0.98] sand 0.64 [0.41, 0.83]

900 0.74 [0.58, 0.85] 20 0.83 [0.67, 0.92] slime 0.24 [0.06, 0.64]

1300 0.53 [0.37, 0.68] 30 0.67 [0.51, 0.79]

1700 0.31 [0.15, 0.53] 40 0.45 [0.30, 0.62]

2100 0.15 [0.04, 0.40] 50 0.25 [0.11, 0.46]

2500 0.06 [0.01, 0.30] 60 0.12 [0.03, 0.34]

3400 0.01 [0.00, 0.13] 70 0.05 [0.01, 0.24]

4. Discussion

Since its introduction into Morocco in 1972, probably via the Aquarium/ornamental
plant trade or by migratory birds, the North American P. acuta has become the most
widespread invasive mollusk in Morocco [24], where the species appears to be highly
euryceous and can thrive in various habitats, including degraded ones. The habitats of this
species vary widely, from large permanent streams at high and low altitudes to reservoirs,
natural and managed springs, and small temporary tributaries, as long as they are con-
nected to a permanent source or underground water. It can also be found in human-made
structures, such as irrigation canals and cement tanks used for water retention. Its southern-
most record is presently in the Laayoune-Sakia El Hamra region, where it seems to adapt
easily and to have low requirements in terms of habitat quality. In Morocco, the species has
been found in freshwaters with high levels of organic matter and low dissolved oxygen
levels. Specimens have been found in the waters of the Selouan and Za Rivers—some of the
most polluted rivers in eastern Morocco [38]. This result is congruent with the literature on
P. acuta in which it is considered a globally invasive species living in all kinds of freshwater
environments, including altered habitats [18,39,40]. Once established, P. acuta can adapt to
a wide range of habitat conditions including highly polluted freshwaters [40]. It is highly
tolerant to elevated temperature and often abundant in reservoirs affected by thermal
waters from heat and power plants [41,42]. Its high capacity to tolerate great variability
in abiotic factors and to successfully withstand extreme physical and chemical parameter
values might be key to its biological success [43–45]. Physella acuta can survive in unstable,
heated freshwater environments and colonize environmentally toxic habitats inaccessible
to other snail species thanks to its high resistance to pollution [46,47]. It can stand anaerobic
conditions for prolonged periods because snails are pulmonates and can use atmospheric
oxygen [48]. One of the most important traits of P. acuta is its huge evolutionary potential
which allows it to adapt to new environmental conditions [49]. P. acuta has remarkable
reproductive plasticity and a greater foraging ability than native species. This feature might
contribute to its invasion success and allow it to displace native gastropods and become
the dominant species over very short periods of time [50–52].

Among the environmental parameters explaining the current distribution of P. acuta
in Morocco, our models highlighted that flow velocity and conductivity were the two main
limiting factors (alongside other factors) explaining its distribution. Its low tolerance to
flow velocity explains why it can invade flowing water ecosystems only in summer, after
water levels and flow rates have decreased and when the current velocity slows down. This
phenomenon is particularly noticeable in the Moulouya, Za and Melloulou Rivers [28,29,37].
This finding is congruent with those of previous studies on the sensitivity of P. acuta to
flow velocity [53,54]. It is indeed known to inhabit standing water ecosystems such as
wetlands, ponds, lakes and downstream stretches of rivers [18]. Its current distribution
may be strongly enlarged by the impact of climate change in Morocco because climate
change is impacting the water discharge of streams and rivers worldwide [55].
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This is particularly true in North African countries which are particularly impacted by
anthropogenic activities, and Morocco is a good example. The country currently faces a
crisis due to climate change and the overexploitation of its resources in freshwaters. The
country extends latitudinally through five different bioclimatic zones [56], which results in
a declining rainfall gradient from north to south and a longitudinal gradient influenced
by the Atlas Mountains. Precipitation trends in Morocco are highly variable. However,
projections from the USIAD indicate a significant decrease in average annual rainfall across
the country from 10–20% to as much as 30% in the Saharan region [57]. The construction of
hydraulic facilities has increased considerably since the 1990s to compensate for this scarce
rainfall, and several surface water mobilization structures have been built on watercourses
in catchment basins, mainly in the northern part of the country [58]. The National Water
Strategy of Morocco has already planned the construction of about 60 large dams by 2030 in
addition the 150 existing ones and also 1000 small dams for the development and transfer
of raw water resources from the north to the south and for the safeguarding of hydraulic
infrastructures. Moreover, there are already 13 water transfer systems between watersheds
that may promote the dispersion of P. acuta between hydrosystems [59]. As a consequence,
the distribution of P. acuta in Morocco may strongly increase over the next few decades.

The range of expansion of P. acuta may be restricted by the rising salinity of freshwaters
due to climate change. Our study shows that P. acuta is sensitive to electrical conductiv-
ity above 400 µs.cm−1. This confirms the results of previous experimental studies that
highlighted the sensitivity of pulmonate gastropoda to salinity, especially of P. acuta [60].
In freshwaters, the concentration of dissolved ions can increase through evaporation, es-
pecially in semi-arid and arid regions and regions with seasonally hot dry climates [61].
This trend is expected to increase due to climate change and the reduction in available
surface water volumes [57]. Several processes can contribute to salinization in arid and
semi-arid areas. For instance, irrigation leaves salt residues behind after evaporation, and
groundwater levels rise following vegetation removal. All of this brings salt ions from
weathering geological sources toward the soil surface [62]. This can be expected in Morocco
where the water management strategy will increase groundwater pumping and promote
evaporation in dams and irrigation channels. The resulting potential rising conductivity
may restrict the range of expansion of P. acuta if conductivity reaches the threshold of
400 µs.cm−1 highlighted in our study.

Molluscan invasions can lead to fauna homogenization, extirpation of vulnerable
endemic species and alterations in the biotic composition of the invaded ecosystems, as in
the case of P. acuta. This invasive species can cause several negative impacts on the invaded
freshwater ecosystems [13,63,64]. In addition to P. acuta, five other alien and notorious
invasive snails can be found in the freshwaters of Morocco, i.e., the seminole rams-horn
Helisoma duryi (Wetherby, 1879), the New Zealand mudsnail Potamopyrgus antipodarum
(J.E. Gray, 1843), the North American freshwater limpet Ferrissia californica (Tryon 1863),
the Malayan livebearing snail Melanoides tuberculata (O.F. Müller, 1774) and the Fountain
bladder snail Physa fontinalis (Linnaeus, 1758). Worse still, many invasive species have been
recorded recently to be present in the freshwater ecosystems of Morocco, including fish,
annelids, mollusks and arthropods, leading to the formation of new communities in the
area through diverse unknown interactions with unpredictable damage [24,65–68].

In 2023, we have seen huge gaps between the number of known alien species and
the number of studies devoted to examining their impacts in the freshwater ecosystems in
Morocco and how management strategies against biological invasion are still lacking [24].
Even worse, except for the ruddy-headedduck Oxyura jamaicensis (Gmelin, 1789), there
is no eradication program to eliminate or stop the spread of exotic species in Morocco.
Management plans for the control or eradication of invasive alien species, such as P. acuta
and other notorious snails, must be implemented and are urgently needed.
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5. Conclusions

The bladder snail is one of the most widespread freshwater exotic species in Morocco,
and the fact that its spread has gone undetected is linked to the lack of studies on alien
species. The results of this study once again demonstrate the adaptability of P. acuta
and identify current velocity (among others) as the primary factor hindering its spread
in North Africa. As a result of ongoing anthropogenic changes in natural habitats and
climate patterns (irregular and scarce rainfall), the lotic ecosystems of Morocco are expected
to experience a decrease in their flow rate and velocity. This could lead to significant
expansion of the dispersal range of invasive species such as P. acuta. However, climate
change may also lead to an increase in conductivity that may limit its range of expansion.
Further studies on the impact of salinization in Morocco are required to better predict the
range of expansion of P. acuta.

Although the relationship between P. acuta populations and environmental factors is
well documented in the invaded areas of the North Palearctic regions, our understanding
of how environmental factors influence P. acuta populations in the freshwaters of North
Africa is limited. This study represents an important step toward a better understanding of
the invasion process of P. acuta and its population dynamics in response to environmental
factors and climate change in Morocco and North Africa as a whole.

Supplementary Materials: The following supporting information can be downloaded at:
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